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Abstract—Controlling high-dimensional and underactuated
robotic systems to execute dynamic, contact-rich motions re-
mains a challenge for optimization-based methods due to the
discontinuous dynamics introduced from inelastic impact. Our
work exploits the formulation of direct contact-implicit trajectory
optimization to smoothen out discontinuities in the first stage
of our framework. We are thus able to optimize given a non-
informative initialization, while through the use of a continuation
method the generated motion plan has strict physical feasibility.
The smooth optimization landscape in the first stage enables
us to efficiently discover a crude motion plan that places the
second and final stage in a desired basin of attraction. In contrast
to prior works that rely on different forms of guidance and
only optimize locally, we present a task-agnostic contact-implicit
trajectory optimization framework that works with minimal
guidance, without any task-specific initialization nor references.
We also present a novel contact-implicit trajectory optimization
formulation that gives us a direct handle on the contact modes
and is a crucial tool in overcoming the sim2real gap.

Index Terms—contact-implicit, trajectory optimization, motion
planning

I. INTRODUCTION

Legged loco-manipulation systems demonstrate great
potential in removing humans from dull, dirty and dangerous
environments. However, their capabilities are currently
limited to conservative walking and careful interaction with
the environment. The next level of applications we are looking
to unlock includes physically intensive tasks that require
human level athleticism, which pose a challenge in contrast to
the current tasks most robots are designed for, like inspection
and surveillance. The execution of such tasks by robotic
systems will require long horizon contact-exploiting planning
to successfully complete the task instead of instantaneous
reactive thinking.

II. PRIMARY CONTRIBUTIONS

We present a task-agnostic contact-implicit trajectory op-
timization framework that automatically discovers the mode
schedule and generates motion plans that are realizable on
hardware, given only a terminal goal. Our framework works
with minimal guidance as the only task-specific input is a
high-level goal provided by the user without any task-specific
initialization nor references.
Our work builds on current contact-implicit approaches
through a three-fold contribution:

• We present a continuation method for contact-implicit
trajectory optimization that works with minimal guidance

and without handcrafted initialization nor references. Our
framework gradually introduces the contact physics and
constraints eliminating the need to handcraft references
and a good initial guess. This allows us to automatically
discover motions and contact schedules given only a
user-specified goal at the end of the task horizon.

• We present a novel formulation for contact-implicit
trajectory optimization (TO) that allows us to explicitly
encode constraints or preferences on contact modes,
without the combinatorial complexity of mixed-integer
programming. In contrast to prior work on contact-
implicit TO by Posa et al. [1], our relaxed Mixed-Integer
formulation with additional relaxed orthogonality
constraints enables us to encode constraints and costs
directly on the contact modes. We demonstrate its use on
eliminating unrealistic gaits from the returned solutions
to achieve a minimum sim2real gap.

• We test the motion plans generated by our framework on
hardware for a complex, under-actuated legged system.

III. RELATED WORK

A. Control for complex, long-horizon tasks

Long horizon, contact-rich tasks on legged systems remain
a challenge for both learning-based and optimization based-
approaches. Such tasks are a challenge for optimization-based
methods that optimize through contact because discontinuities
or stiff dynamics arising from contact phenomena lead
to a numerically challenging optimization landscape. The
current state of the art in optimization-based methods for
athletic loco-manipulation tasks by Sleiman et al. [2] avoids
optimizing through contact by pre-defining the mode schedule
of the feet contacts. Current approaches that optimize through
contact bypass this challenge by only optimizing locally
such that the solver does not have to overcome problematic
areas such as bad local minima or flat regions to reach a
good solution. This approach often includes handcrafting
references for complementarity-constrained variables [3],
and/or providing a good initial guess that place the solver in
a desired basin of attraction [1].

Zero-order methods, such as RL, are not prone to issues
with jagged optimization landscapes as they do not use
gradient information and have shown impressive results in
contact-rich tasks. However, zero-order methods over large
action spaces suffer from sample complexity. In addition,



in the context of long horizon tasks on legged systems,
sparse rewards and sensitive dynamics lead to uninformative
signals. Hence, approaches in this class of methods often
require extensive guidance in the form of reward shaping
[4] or demonstrations [5] to guide the search to a desired
subspace of solutions, which requires extensive task-specific
engineering effort.

The success of RL in through-contact optimization has
already hinted that stochasticity and zero order optimization
are beneficial in the presence of discontinuities or stiff
dynamics which inspired researchers to employ a combination
of noise injection, sampling and interpolation schemes [6, 7]
to optimize over the non-smooth landscapes. However, in
the context of contact-implicit trajectory optimization, the
discontinuous contact physics appear as constraints on the
decision variables. Hence, it adds unnecessary complexity to
use stochasticity or interpolation schemes to optimize over
a non-smooth optimization landscape, while we can easily
smoothen the optimization landscape using standard penalty
methods.

B. Contact-implicit trajectory optimization

To the best of our knowledge, it’s not obvious yet
how learning-based methods can be improved to work
without reward shaping or expert demonstrations. Thus,
our work focuses on optimization-based methods, namely
contact-implicit trajectory optimization. Contact-implicit
approaches have had the most success in the form of
constrained optimization over continuous decision variables,
where the contact physics are encoded as constraints on the
decision variables. In contrast to Mixed-Integer Programming
approaches [8, 9], and hybrid dynamics methods, the
advantage of this formulation is that it does not suffer from
combinatorial mode complexity. In addition, they offer the
benefit of automatically discovering the mode sequence and
number of steps, in contrast to phase-based parametrizations
[10].

Contact-implicit approaches that rely on the hard contact
model lead to a non-convex Non-Linear Program (NLP) with
stiff contact physics encoded through the complementarity
constraints, which create an optimization landscape with
flat gradients, and infeasible or other ‘bad’ local minima.
Hence, existing approaches in this category require a
handcrafted initialization and/or references to avoid running
into infeasibility issues [1, 11]. In our work, through
smoothening the optimization landscape during the early
stages of the optimization, we smooth out ‘bad’ and infeasible
local minima and can reach a ‘good’ and feasible basin of
attraction that would have otherwise required a good initial
guess to reach.

Similar work to ours is prior work by Mordatch et al. [12],
where they presented results on contact-rich tasks using soft

constraints to encode the contact physics and thus render the
optimization landscape smooth for gradient descent. However,
they only presented results in simulation as their generated
motion plans lack physical accuracy. Our work builds on this
work by integrating an analogous formulation in the discovery
stage, and augmenting it with a subsequent refinement stage
that enforces physical accuracy.

C. Warm-starting TO through soft-contact relaxation

Marcucci et al. [13] present a continuation method where
the relaxation relies on relaxing the contact parameters, on
using a coarser discretization and on using an approximate
pseudo-static dynamic model. Similarly, Suh and Wang
[14] study the effectiveness of warm-starting physically
accurate methods with methods that rely on a relaxed
approximation of the contact model for a toy problem.
Overall, Marcucci et al. [13] and Suh and Wang [14] are
the closest work to ours, but they rely on the soft contact
model (also called penalty-based contact model) originally
proposed in [15] which lacks physical accuracy as it models
contact interactions with a spring(-damper) model. They
also only presented results on simple 2D systems which
lack the complexity of legged robotic systems and the
generated insights (such as about the effectiveness of single
shooting) are not expected to share the same success in highly
non-linear and high-dimensional systems. We build on their
work as we use their generated insights to our advantage.
Specifically, we choose the augmented over the embedded
scheme including contact forces as explicit decision variables.
The idea of using a coarse discretization grid in the first
stage is also present in our work, but we employ splines
to further improve computational efficiency without vastly
sacrificing expressiveness. We also emulate the relaxation
of the contact parameters through a soft-to-hard constraint
strategy as there are no such parameters that explicitly
determine the stiffness in the hard contact model. In contrast,
we use a hard contact model that is physically accurate
and has shown to transfer successfully to complex robotic
systems in the real world [1], and present results on hardware.

IV. MODELLING

A. Complementarity Constraints

Our method relies on a hard contact model where the contact
forces are included as continuous decision variables, and the
contact physics are encoded as constraints. In the scope of our
work, we explicitly do not allow sliding, so our formulation
consists of two complementarity constraints: a separation and
a sliding complementarity constraint. The separation constraint
encodes that there must be no ground penetration, no forces
can be applied at a distance and that the forces are unilateral.
The sliding constraint encodes that no force can be applied
when the tangential velocity of the end-effector is non-zero.



B. Single Rigid Body (SRB) Model

Optimization through contact is governed by the
aforementioned complementarity constraints. These
constraints are the most numerically challenging component
in our formulation and live in Cartesian space. We chose
the SRB model as it also lives in Cartesian space, and we
augment it with the end-effector positions and velocities,
analogous to prior work by Winkler et al. [10].

1) State variables: The state consists of the base pose and
twist, and end-effector positions and velocities. The base pose
includes the CoM position, denoted by c, and orientation
expressed as ZYX Euler angles, denoted by θ. The base twist
includes the CoM velocity, denoted by ċ, and the angular
velocity, denoted by ω. The position and velocity for end-
effector i are denoted by ri and ṙi,respectively. All quantities
are expressed in the world frame. We use the following
convention for the order of the end-effectors: left hind, right
hind, left front, right front.

x =
[
c θ ċ ω r1 . . . rnc

ṙ1 . . . ṙnc

]
(1)

2) Input variables: The input consists of the contact forces
at each of the nc end-effectors, denoted by f i, as well as the
end-effector accelerations, denoted by r̈i. We do not consider
the torques at the end-effectors, under the assumption of point
contacts.

u =
[
f1 . . . fnc

r̈1 . . . r̈nc

]
(2)

3) Dynamics: The SRB model is governed by the SRB
centroidal dynamics. I denotes the rotational inertia, which
we assume it’s constant by using its value at a nominal
configuration. T (θ) denotes the Jacobian that transforms the
angular velocity to the time-derivative of the ZYX Euler
angles. WRB denotes the rotation matrix of the base in the
world frame.

θ̇ = T (θ) ω (3)

ω̇ = I−1
W (θ) (

nc∑
i=1

f i × (ri − c)− ω × IW(θ) ω) (4)

c̈ =
1

m

nc∑
i=1

(f i +mg) (5)

where

IW(θ) = WRB(θ) IB WRB(θ)
T (6)

V. METHOD

We propose a framework that consists of a motion
discovery (MD) and a motion refinement (MR) module.
Given a high-level goal provided by the user, the MD module
gradually introduces the physics and nonlinear constraints
while the MR module enforces strict physical feasibility to
ensure a minimum sim2real gap. The first module, MD, is

allowed to break the laws of physics and violate the nonlinear
constraints at intermediate stages. Thus, the MD stage doesn’t
require a good initial guess. Since the solution of the MD
module is then used as an initialization to the MR module,
our framework works with minimal guidance. For example,
for the task of local navigation and locomotion, we only need
to provide a goal (e.g., a desired x-y position and yaw) at
the end of the task horizon. This eliminates the need for the
human expert to handcraft reference trajectories and an initial
guess.

The role of the motion refinement stage is to ensure
a minimum sim2real gap. On one hand, it enforces strict
physical feasibility. On the other hand, it allows us to
explicitly penalize unrealistically fast contact switches and
enforce any other constraints on the contact modes, producing
realistic motion plans. We achieve this through a novel
relaxed Mixed-Integer formulation. Having a direct handle
on the contact mode decision variables, our method allows
us to exclude unrealistic contact modes from our search
space, leading to motion plans that are realizable on hardware
despite the highly non-convex optimization landscape. We
validate the quality and strict physical accuracy of the motion
plans generated by our framework by tracking the generated
trajectory with a whole-body tracking controller both in
simulation and on hardware. Even though we present results
in legged locomotion only, our framework is task-agnostic:
given a corresponding Cartesian space model, it can be used
for any contact-rich task on any robotic platform such as
legged locomotion or loco-manipulation.

Both modules consist of an Optimal Control Problem
(OCP). The goal in each stage is to find a trajectory that
satisfies a set of constraints while minimizing a specified
objective. We have selected simultaneous methods for the
transcription of the OCP of both modules, as including the
state variables as decision variables leads to better numerical
conditioning with respect to state and state-input constraints
(such as the complementarity constraints). We use the CasADi
MATLAB library [16] to solve the NLPs as an interface to
IPOPT [17].

A. Motion Discovery Module

The OCP of the MD module is transcribed using direct
Hermite-Simpson collocation, where the state and input tra-
jectories are parametrized by cubic Hermite splines. We chose
spline parametrization for computational efficiency - its higher
order of accuracy allows for a reduced number of knot points.
In this module, the contact physics are only softly enforced to
prevent any convergence issues.

1) Objective: The objective function,LMD(X,U, U̇), is de-
composed to a stage cost and a terminal cost. The stage cost
is linear combination of a regularization cost, Lreg, a contact
physics violation cost, LCP , and a ground clearance cost,



LGC , each term weighted by a corresponding weight, ws:

LMD(X,U, U̇) = Lf (x(N))

+

∫ T

0

∑
s

wsLs(x(t),u(t), u̇(t)) dt (7)

Lf (x) = ||x− xref ||2Qf
(8)

Lreg(x,u, u̇) = ||x− xref ||2Q + ||u||2R + ||u̇||2RR (9)

LCP (x,u, u̇) =

nc∑
i=1

g(fN
i (u)) (ϕi(x)

2 + ||vT
i (x)||22) (10)

LGC(x,u, u̇) =

nc∑
i=1

g(−fN
i (u)) (B̂(ϕi(x)− hnominal))

(11)
where s ∈ {reg, CP,GC}. hnominal denotes the desired

swing height. ϕi(x), fN
i (u), and fT

i (u) denote the gap
function, and the normal and tangential components of
the contact force of the ith end-effector respectively.
The tangential velocity of the ith end-effector is denoted by
vT
i (x). We use B̂(·) to denote the relaxed log barrier function.

The complementarity constraints that encode (our approx-
imate model of) the contact physics appear in the objective
through the LCP term as they are enforced as soft constraints
using a quadratic penalty. Similar to [18], the contact modes
are not independent decision variables but are a function of
the normal contact forces. Contact activation is defined as
a smooth step function of the normal contact force, which
is used to softly enforce the orthogonality component of
the complementarity constraints. The smooth step function
is denoted by g(·), and in our implementation we use the
following transformation of the tanh function:

g(x) = 0.5 + 0.5 tanh(x/a− b) (12)

2) Constraints: The dynamics are enforced through the
derivative method, i.e., as an equality constraint between the
dynamics evaluated at a collocation point and the slope of
the state spline (13). We enforce the initial condition as a
constraint (14), a unilateral and a maximum limit constraint
on the normal component of the contact force fN

i (u) (16),
and a non-penetration constraint on the gap function (18).
As a proxy for actuation bounds, we enforce a limit on the
end-effector velocities (17). In addition, we constrain the
contact force to lie in an outer linear approximation of the
friction cone (15). We also enforce a terminal constraint on
the state that encodes the user-specified command (20). This
constraint is constructed by specifying a box constraint around
the commanded x-y position (and yaw if applicable). We
can thus guarantee that the returned motion plan reaches the
commanded state (within a specific tolerance). Furthermore,
we enforce a box constraint on the end-effector positions
in the base frame, abstracted in notation by a non-linear
constraint Ψ(x) (19).

In addition, we have found it necessary to divide the
motion discovery phase into two stages, where in the first
preliminary stage the nonlinear constraints are also enforced
as soft constraints with quadratic penalty and the limits
(fN,limit and vlimit) are relaxed to larger values. The solution
of this stage is then used as initialization for the main stage
where the nonlinear constraints are hard constraints and the
actual limits are used.

ẋ(t) = fCT (x(t),u(t)) (13)

x(0) = x0 (14)

||fT
i (u(t))||∞ ≤ µ fN

i (u(t)) (15)

0 ≤ fN
i (u(t)) ≤ fN,limit (16)

||vi(x)||∞ ≤ vlimit (17)

0 ≤ ϕi(x(t)) (18)

x(t) ∈ Ψ(x(t)) (19)

AxN
x(T ) ≤ bxN

(20)

3) Direct Collocation:

min
X,U,U̇

LMD(X,U)

s.t. (13) − (20)

The decision variables of the MD OCP are X , U and
U̇ . The MD OCP is transcribed to a constrained NLP using
Hermite-Simpson direct collocation. The objective function is
integrated using Simpson quadrature and all state and input
decision variables are parametrized by Cubic Hermite splines.
The cubic splines are fully defined by the knot points and the
slopes at those knot points. The slopes for the splines of the
state variables are constrained to match the dynamics at the
knot points, while for the splines of the input variables they
are part of the decision variables (U̇ ).

4) Initialization: Our goal was to just use a zero
initialization perturbed with Gaussian noise. However, such
an initialization does not lead to a desirable gait as it can
lead to a gait that includes long swing phases and fast contact
switches. To bias the solution towards a regular gait, we
provide an initialization that includes a periodic pattern. Our
framework does not require to carefully handcraft a good
initial guess specific to each task: the same initialization
scheme is used for all tasks. Current results show that our
planner produces a solution that does not resemble the
initialization provided. For example, in the task presented the
gait differs by 27.5%.

The initialization is crudely constructed by alternating
between positive and negative slopes at the knot points of
the normal contact force and the normal component of the
end-effector positions. This pattern is shifted by one knot
point between the diagonal pairs of end-effectors. For the



remaining terms, we use zeros except for the terms included
in the user command (such as x-y CoM position) where we
use a linear interpolation between the initial and commanded
values. In addition, the aforementioned initialization scheme
leads to an initialization that violates the contact physics, and
thus the initialization need not be strictly feasible.

(a) (b)

(c) (d)

Fig. 1: Initialization used for the complementarity constrained
variables of the LH-RF (a-b) and RH-LF (c-d) end-effectors.
Inspired from a trot gait, the periodic pattern in the splines is
shifted by one knot point for the two diagonal pairs of end-
effectors (LH-RF and RH-LF).

B. Motion Refinement Module

We formulate the OCP of the MR Stage as a relaxed
Mixed-Integer program, with relaxed integer variables, z, to
encode the contact modes. Specifically, we relax the boolean
constraint zi ∈ {0, 1} to its convex hull zi ∈ [0, 1]. As
a result, our method optimizes over continuous decision
variables and thus does not suffer from the combinatorial
complexity of mixed-integer programming. We additionally
enforce an epsilon-relaxed orthogonality constraint to recover
the orthogonality from the original boolean constraint.
Subsequently, our formulation is not relaxed (assuming a zero
epsilon) as in standard relaxed Mixed-Integer formulations
and can thus achieve strict physical accuracy.

Overall, the major advantage of our formulation is that
in, in contrast to prior work on contact-implicit TO by Posa
et al. [1], we can encode constraints and costs on the contact
modes. Specifically, we found it necessary to exclude or
penalize gaits with unrealistically fast contact switches. This
is needed as when optimizing over the gait, it is not possible
to encode phase-dependent costs or constraints. Hence, we

are not able to enforce ground clearance constraints during
swing, as commonly done in multi-phase formulations [19],
to avoid foot scuffing. In absence of these constraints, the
returned motion plan can include a gait with very short swing
phases, which we found to often be the case in our experiments
with the state-of-the-art contact-implicit TO formulation [1].

1) Objective: The objective function,LMR(X,U,Z), is de-
composed to a stage cost and a terminal cost. The stage cost
is a sum of a regularization cost, Lreg, and a cost on contact
switches, LFC :

LMR(X,U,Z) = Lf (x(N))

+ dt

N−1∑
k=0

Lreg(x(k),u(k)) + LFC(z(k), z(k + 1)) (21)

Lf (x) = ||x− xref ||2Qf
(22)

LFC(z, z
′) = ||z′ − z||2P (23)

2) Constraints: The dynamics are enforced through the
integral method using forward Euler. The initial condition (25),
friction cone (26), terminal (34) and kinematic constraints (32)
are equivalent to the corresponding ones of the MD module.
We encode the complementarity constraints through the big-
M formulation, where Mf , Mϕ and Mv denote the big-M
for the normal component of the contact force, for the gap
function and for the tangential velocity of the end-effector
respectively. The indexing of the complementarity constrained
variables is important as we use the time-stepping integration
scheme [20] to deal with contact impulses. In absence of any
additional constraints, this formulation resembles a relaxed
Mixed-Integer NLP which suffers from physical inaccuracy
as it relaxes the boolean constraint to its convex hull (30). In
our formulation we enforce an additional constraint (31) to
recover the boolean constraint that encodes the orthogonality
between the pairs of complementarity constrained variables.
Furthermore, we leverage the direct handle on the contact
mode of each end-effector to enforce stance at start and end
of motion, penalize fast contact switches and require at least
2 feet to be in contact at all times. (33) denotes the collection
of all the linear (equality and inequality) constraints on the
contact modes.

x(k + 1) = fDT (x(k),u(k)) (24)

x(0) = x0 (25)

||fT
i (u(k))||∞ ≤ µ fN

i (u(k)) (26)

0 ≤ fN
i (u(k)) ≤ Mf zi(k) (27)

0 ≤ ϕi(x(k + 1)) ≤ Mϕ (1− zi(k)) (28)

||vT
i (x(k + 1))||∞ ≤ Mv (1− zi(k)) (29)

z(k) ∈ [0, 1] (30)

zi(k)
T · (1− zi(k)) ≤ ε (31)

x(k) ∈ Ψ(x(k)) (32)



Az,kz(k) ≤ bz,k (33)

AxN
x(N) ≤ bxN

(34)

3) Direct Transcription:

min
X,U,Z

LMR(X,U,Z)

s.t. (24) − (34)

The decision variables of the MR OCP are X , U and Z. The
MR OCP is transcribed into a constrained NLP using direct
transcription, where the input variables and the state variables
are approximated with piecewise constant and piecewise linear
trajectories respectively. The objective is integrated using
forward Euler.

4) Initialization: X and U are initialized from the solution
of the MD module by interpolating the splines of the respective
variables. Z is initialized with a matrix of 0.5’s, as otherwise a
heuristic would have been needed to extract the contact modes
from the solution of the MD module.

C. Tracking Controller

The task-space references (base position (x,y) and base
yaw) generated by our contact-implicit planner must then be
tracked by a tracking controller that operates in joint-space.
This can be achieved by any type of controller, learning-
or optimization-based. In this work, we use a whole-body
planning framework [2] together with a whole-body controller,
where the former generates and the latter tracks joint positions
and velocities, and contact forces. In the planning framework,
we pre-define the gait using the solution of the integer
variables of the MR module, which enables us to use efficient
optimal control methods for switched systems [21]. For the
whole-body controller, we use the hierarchical QP-based
framework from [22].

We also found it beneficial to include a polishing step
to refine the trajectories generated by the contact-implicit
optimization prior to tracking them online. We expect that a
transition to a learning-based tracking controller will deem
this step unnecessary. The polishing step is formulated
as a hybrid optimization that includes the full centroidal
dynamics and the kinematics of the robot, in contrast to the
contact-implicit planner that relies on a SRB model. It thus
leads to trajectories that are of higher quality and have higher
physical accuracy.

In this step, constraints are enforced such that the force
vectors lie in the friction cone, forces are zero during swing,
sliding is not allowed, gap function is zero during stance
and that the desired foothold positions are tracked during
stance. The end-effector positions are also constrained in
the normal direction during the swing phase to achieve the
necessary ground clearance. Since accuracy is of higher
importance than computational efficiency in this step, we use
a high order integration method (RK4). The polishing step is
transcribed using multiple shooting, and solved using SQP.

Fig. 2: XY position command.

Both the polishing step and the MPC planning framework are
implemented using the OCS2 framework [21].

VI. RESULTS

A. Local Navigation and Locomotion

We have tested our framework on a range of motions for
the task of local navigation and locomotion, analogous to the
task considered by Rudin et al. [23]. Given only a high-level
goal, our planner generates reference trajectories for the base
and end-effectors (from which contact locations can also be
extracted) and the mode schedule. The goal is specified by
the user, and it can include x-position, y-position, and/or yaw
orientation for the base.

In the examples illustrated in Figures 2 and 3, the
foothold locations and the changes in yaw emerge from the
planner and neither any references nor the initialization were
modified to hint that. The red spheres illustrate the position
command and the green arrows the yaw orientation command.

B. Sim2real gap

Physical feasibility is gradually introduced to prevent any
feasibility or convergence issues earlier on in the pipeline.
The motion plan generated by the MD module is not strictly
feasible, but strict feasibility is enforced by the MR module.
As also seen in Figure 4, both complementarity constraints
are satisfied strictly in the final solution. We validated the
physical feasibility of the generated motion plans by also
executing them on hardware (Figure 5). Phases with less
than 2 feet in contact proved to be a source of failure in
executing the generated motion plans in the physical simulator,
which we addressed by modifying constraint (33) accordingly.

VII. CONCLUSION

Overall, our framework is able to generate contact-rich
motions that are realizable on hardware given a non-
informative initialization. We exploit the contact-implicit
TO formulation that gives us direct access to the source of
discontinuities, the complementarity constraints, to smoothen
the optimization landscape. We thus eliminate the need for



Fig. 3: XY position, and yaw orientation command.

Fig. 4: Feasibility of complementarity constraints in solution
from (Top) MD module and (Bottom) MR module.

a human expert to guide the solver to a desired basin of
attraction through handcrafted references or initialization. In
addition, we present a novel formulation for contact-implicit
TO that gives us a direct handle on the contact modes for
the primary purpose of eliminating unrealistic gaits from the
space of feasible solutions. As a result, the final output of
our continuation method are motion plans that have strict
physical accuracy and gaits that are realizable on hardware.

The current bottleneck of our pipeline is the multi-phase

Fig. 5: Generated motions were realizable on hardware.

planning framework which is sensitive to any fast contact
switches in the generated mode schedule, as well as to any
dynamic footholds in the generated references. We expect a
learning-based controller to overcome these limitations and
enable us to execute more dynamic motions. Finally, we
will be exploring the application of the framework to legged
loco-manipulation. Since the workspace of the arm can not
be approximated with task-space constraints easily, we will
investigate including the full kinematics to replace the proxy
kinematic constraints, similar to [24].
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